11 research outputs found

    The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits

    Get PDF
    AbstractWe investigate some basic questions concerning the relationship between the restricted Grassmannian and the theory of Banach Lie–Poisson spaces. By using universal central extensions of Lie algebras, we find that the restricted Grassmannian is symplectomorphic to symplectic leaves in certain Banach Lie–Poisson spaces, and the underlying Banach space can be chosen to be even a Hilbert space. Smoothness of numerous adjoint and coadjoint orbits of the restricted unitary group is also established. Several pathological properties of the restricted algebra are pointed out

    Persistent homology to analyse 3D faces and assess body weight gain

    Get PDF
    In this paper, we analyse patterns in face shape variation due to weight gain. We propose the use of persistent homology descriptors to get geometric and topological information about the configuration of anthropometric 3D face landmarks. In this way, evaluating face changes boils down to comparing the descriptors computed on 3D face scans taken at different times. By applying dimensionality reduction techniques to the dissimilarity matrix of descriptors, we get a space in which each face is a point and face shape variations are encoded as trajectories in that space. Our results show that persistent homology is able to identify features which are well related to overweight and may help assessing individual weight trends. The research was carried out in the context of the European project SEMEOTICONS, which developed a multisensory platform which detects and monitors over time facial signs of cardio-metabolic risk

    Human Immunodeficiency Virus (HIV)-Infected CCR6(+) Rectal CD4(+) T Cells and HIV Persistence On Antiretroviral Therapy

    Get PDF
    BACKGROUND: Identifying where human immunodeficiency virus (HIV) persists in people living with HIV and receiving antiretroviral therapy is critical to develop cure strategies. We assessed the relationship of HIV persistence to expression of chemokine receptors and their chemokines in blood (n = 48) and in rectal (n = 20) and lymph node (LN; n = 8) tissue collected from people living with HIV who were receiving suppressive antiretroviral therapy. METHODS: Cell-associated integrated HIV DNA, unspliced HIV RNA, and chemokine messenger RNA were quantified by quantitative polymerase chain reaction. Chemokine receptor expression on CD4+ T cells was determined using flow cytometry. RESULTS: Integrated HIV DNA levels in CD4+ T cells, CCR6+CXCR3+ memory CD4+ T-cell frequency, and CCL20 expression (ligand for CCR6) were highest in rectal tissue, where HIV-infected CCR6+ T cells accounted for nearly all infected cells (median, 89.7%). Conversely in LN tissue, CCR6+ T cells were infrequent, and there was a statistically significant association of cell-associated HIV DNA and RNA with CCL19, CCL21, and CXCL13 chemokines. CONCLUSIONS: HIV-infected CCR6+ CD4+ T cells accounted for the majority of infected cells in rectal tissue. The different relationships between HIV persistence and T-cell subsets and chemokines in rectal and LN tissue suggest that different tissue-specific strategies may be required to eliminate HIV persistence and that assessment of biomarkers for HIV persistence may not be generalizable between blood and other tissues

    A clinical trial of non-invasive imaging with an anti-HIV antibody labelled with copper-64 in people living with HIV and uninfected controls

    Get PDF
    BACKGROUND: A research priority in finding a cure for HIV is to establish methods to accurately locate and quantify where and how HIV persists in people living with HIV (PLWH) receiving suppressive antiretroviral therapy (ART). Infusing copper-64 (64Cu) radiolabelled broadly neutralising antibodies targeting HIV envelope (Env) with CT scan and positron emission tomography (PET) identified HIV Env in tissues in SIV infected non-human primates . We aimed to determine if a similar approach was effective in people living with HIV (PLWH). METHODS: Unmodified 3BNC117 was compared with 3BNC117 bound to the chelator MeCOSar and 64Cu (64Cu-3BNC117) in vitro to assess binding and neutralization. In a clinical trial 64Cu-3BNC117 was infused into HIV uninfected (Group 1), HIV infected and viremic (viral load, VL >1000 c/mL; Group 2) and HIV infected aviremic (VL <20 c/mL; Group 3) participants using two dosing strategies: high protein (3mg/kg unlabeled 3BNC117 combined with <5mg 64Cu-3BNC117) and trace (<5mg 64Cu-3BNC117 only). All participants were screened for 3BNC117 sensitivity from virus obtained from viral outgrowth. Magnetic resonance imaging (MRI)/PET and pharmacokinetic assessments (ELISA for serum 3BNC117 concentrations and gamma counting for 64Cu) were performed 1, 24- and 48-hours post dosing. The trial (clincialtrials.gov NCT03063788) primary endpoint was comparison of PET standard uptake values (SUVs) in regions of interest (e.g lymph node groups and gastrointestinal tract). FINDINGS: Comparison of unmodified and modified 3BNC117 in vitro demonstrated no difference in HIV binding or neutralisation. 17 individuals were enrolled of which 12 were dosed including Group 1 (n=4, 2 high protein, 2 trace dose), Group 2 (n=6, 2 high protein, 4 trace) and Group 3 (n=2, trace only). HIV+ participants had a mean CD4 of 574 cells/microL and mean age 43 years. There were no drug related adverse effects and no differences in tissue uptake in regions of interest (e.g lymph node gut, pharynx) between the 3 groups. In the high protein dosing group, serum concentrations of 3BNC117 and gamma counts were highly correlated demonstrating that 64Cu-3BNC117 remained intact in vivo. INTERPRETATION: In PLWH on or off ART, the intervention of infusing 64Cu-3BNC117 and MRI/PET imaging over 48 hours, was unable to detect HIV-1 env expression in vivo. Future studies should investigate alternative radiolabels such as zirconium which have a longer half-life in vivo. FUNDING: Funded by the Alfred Foundation, The Australian Centre for HIV and Hepatitis Virology Research with additional support from the Division of AIDS, National Institute of Allergy and Infectious Disease, US National Institutes of Health (USAI126611). JHM and SRL are supported by the Australian National Health and Medical Research Council
    corecore